Padasoal diketahui : Medan listrik (E) = 30 \mathrm {~N} / \mathrm {C} 30 N/C. Yang ditanyakan intensitas radiasi rata-rata gelombang elektromagnetik tersebut dan besar kuat medan magnet maksimumnya. Maka, kita dapat menggunakan persamaan di atas untuk menghitung intensitas radiasi rata-ratanya yaitu : I=\frac {E^2} {2c\mu _0} I = 2cΞΌ0E2. SatuanKuat medan magnet menurut sistem SI adalah? . ampere joule newton Tesla Semua jawaban benar Jawaban: D. Tesla Dilansir dari Encyclopedia medan magnet menurut sistem SI adalah?">Read More Β» cash. Unduh PDF Unduh PDF Magnet lazim ditemukan di motor, dinamo, kulkas, kartu debit dan kredit, serta perlengkapan elektronik seperti pickup listrik gitar, pengeras suara stereo, dan kandar keras hard drive komputer. Magnet dapat bersifat permanen, terbentuk secara alami, atau elektromagnet. Elektromagnet menciptakan medan magnet ketika arus listrik melalui lilitan kabel yang membaluti inti besi. Ada beberapa faktor yang memengaruhi kekuatan medan magnet dan beragam cara untuk menentukan kekuatan medan tersebut, dan keduanya dibahas di artikel ini. 1 Pertimbangkan karakteristik magnet. Sifat-sifat magnet digambarkan menggunakan karakteristik berikut Kekuatan medan magnet koersif, disingkat dengan Hc. Simbol ini mencerminkan titik demagnetisasi penghilangan medan magnet oleh medan magnet lain. Semakin tinggi angkanya, magnet semakin sulit dihilangkan. Kepadatan/densitas fluks magnetis residual, disingkat dengan Br. Inilah fluks magnetis maksimum yang mampu dihasilkan magnet. Berhubungan dengan kepadatan fluks magnetis adalah kepadatan energi keseluruhan, disingkat dengan Bmax. Semakin tinggi angkanya, semakin kuat magnetnya. Koefisien suhu kepadatan fluks magnetis residual, disingkat dengan Tcoef Br dan diekspresikan dalam persentase derajat Celsius, menjelaskan bagaimana fluks magnetis menurun seiring peningkatan suhu magnet. Tcoef Br sebesar 0,1 berarti jika suhu magnet meningkat sebanyak 100 derajat Celsius, fluks magnetis menurun sebesar 10 persen. Suhu operasional maksimum disingkat Tmax adalah suhu tertinggi magnet yang dapat dioperasikan tanpa kehilangan kekuatan medannya. Setelah suhu magnet turun di bawah Tmax, magnet memulihkan kekuatan medan magnet penuhnya. Jika dipanaskan melebihi Tmax, magnet akan kehilangan sebagian medannya secara permanen setelah didinginkan ke suhu operasional normal. Namun, jika dipanaskan sampai suhu Curie disingkat dengan Tcurie magnet akan kehilangan daya magnetisnya.[1] 2 Kenali bahan pembuat magnet permanen. Magnet permanen biasanya terbuat dari salah satu bahan berikut Boron besi Neodymium. Bahan ini memiliki kepadatan fluks magnetis gauss, kekuatan medan magnetis koersif oersted, dan kepadatan energi secara keseluruhan 40. Bahan ini memiliki suhu operasional maksimum terendah, yaitu pada 150 derajat Celsius dan 310 derajat Celsius masing-masing, dan koefisien temperatur sebesar -0,12. Kobalt samarium memiliki kekuatan medan koersif tertinggi kedua, yaitu pada oersted, tetapi kepadatan fluks magnetisnya sebesar gauss dan kepadatan energi secara keseluruhan sebesar 26. Suhu operasional maksimumnya jauh lebih tinggi daripada besi boron neodymium pada 300 derajat Celsius karena memiliki suhu Curie sebesar 750 derajat Celsius. Koefisien suhunya adalah sebesar 0,04. Alnico adalah logam campuran aluminum-nikel-kobalt. Bahan ini memiliki kepadatan fluks magnetis mendekati besi boron neodymium gauss, tetapi kekuatan medan magnetis koersifnya sebesar 640 oersted dan kepadatan energinya secara keseluruhan hanya 5,5. Bahan ini memiliki suhu operasional maksmum lebih tinggi daripada kobalt samarium, yaitu pada 540 derajat Celsius, serta suhu Curie yang lebih tinggi sebesar 860 derajat Celsius, dan koefisien suhu sebesar 0,02. Magnet keramik dan ferit memiliki kepadatan fluks yang jauh lebih rendah dan kepadatan energi secara keseluruhan dibandingkan bahan-bahan lainnya, yaitu pada gauss dan 3,5. Namun, kepadatan fluks magnetisnya lebih baik dibandingkan alnico, yaitu sebesar oersted. Bahan ini memiliki suhu operasional maksimum sama dengan kobalt samarium, tetapi suhu Curie yang jauh lebih rendah, yaitu 460 derajat Celsius, dan koefisien suhunya sebesar -0,2. Dengan demikian, magnet lebih cepat kehilangan kekuatan medan magnetisnya dalam suhu panas dibandingkan bahan lainnya. 3Hitung jumlah lilitan dalam kumparan elektromagnet. Semakin banyak lilitan per panjang inti, semakin besar kekuatan medan magnetnya. Elektromagnet komersial memiliki inti yang ukurannya bisa disesuaikan dari salah satu bahan magnetis yang dijelaskan di atas dan kumparan besar di sekelilingnya. Namun, elektromagnet sederhana dapat dibuat dengan menggulungkan kabel pada paku dan menyambungkan ujungnya pada baterai 1,5 volt. [2] 4 Periksa banyak arus yang mengalir melalui kumparan elektromagnetik. Sebaiknya Anda menggunakan multimeter. Semakin besar arusnya, semakin kuat medan magnet yang dihasilkan. Ampere per meter A/m adalah satuan lain yang digunakan untuk mengukur kekuatan medan magnet. Satuan ini menunjukkan bahwa jika arus, jumlah kumparan, atau keduanya ditingkatkan, kekuatan medan magnetnya pun meningkat. Iklan 1 Buat penahan untuk magnet batang. Anda bisa membuat penahan magnet sederhana menggunakan penjepit jemuran dan cangkir stirofoam. Metode ini paling cocok untuk mengajarkan medan magnet kepada murid SD. Rekatkan salah satu ujung panjang penjepit jemuran ke bagian bawah cangkir. Jungkirkan cangkir yang ditempeli penjepit jemuran dan letakkan di atas meja. Jepitkan magnet ke penjepit jemuran. 2Bengkokkan klip kertas menjadi kait. Cara termudah untuk melakukannya adalah dengan menarik ujung luar klip kertas. Kait ini akan digantungi banyak klip kertas. 3Teruskan menambah klip kertas untuk mengukur kekuatan magnet. Tempelkan klip kertas yang bengkok pada salah satu kutub magnet. bagian kait harus menggantung bebas. Gantung klip kertas pada kait. Teruskan sampai berat klip kertas menjatuhkan kait. 4Catat jumlah klip kertas yang menyebabkan kait jatuh. Ketika kait jatuh akibat beban yang ditanggungnya, catatlah jumlah klip kertas yang tergantung pada kait. 5Rekatkan selotip penutup pada magnet batang. Tempelkan 3 setrip kecil selotip penutup pada magnet batang dan gantung kait kembali. 6Tambahkan klip kertas pada kait sampai jatuh dari magnet. Ulangi metode kertas klip sebelumnya dari kait klip kertas awal, sampai pada akhirnya jatuh dari magnet. 7Tuliskan seberapa banyak klip yang dibutuhkan untuk menjatuhkan kait. Pastikan Anda mencatat jumlah setrip selotip penutup dan klip kertas yang digunakan. 8Ulangi langkah sebelumnya beberapa kali dengan lebih banyak selotip penutup. Setiap kalinya, catat jumlah klip kertas yang dibutuhkan supaya jatuh dari magnet. Anda seharusnya memperhatikan bahwa setiap kali selotip ditambahkan, klip yang dibutuhkan untuk menjatuhkan kait semakin sedikit. Iklan 1 Hitung voltase/tegangan dasar atau awal. Anda bisa menggunakan gaussmeter, yang juga dikenal dengan magnetometer atau detektor EMF electromagnetic field/medan elektromagnetis, yaitu perangkat portabel yang mengukur kekuatan dan arah medan magnet. Perangkat ini biasanya mudah dibeli dan digunakan. Metode gaussmeter cocok untuk mengajarkan medan magnet kepada murid SMP dan SMA. Berikut cara menggunakannya Atur voltase maksimum sebesar 10 volt DC direct current alias arus listrik langsung. Baca tampilan voltase dengan meter menjauhi magnet. Inilah voltase dasar atau awal, yang diwakilkan sebagai V0. 2Sentuhkan sensor meter pada salah satu kutub magnet. Pada sebagian gaussmeter, sensor yang disebut sensor Hall ini dibuat untuk mengintegrasikan cip rangkaian listrik sehingga Anda bisa menyentuhkan batang magnet pada sensor. [3] 3Catat voltase baru. Voltase yang diwakilkan dengan V1 ini akan naik atau turun, tergantung batang magnet yang menyentuh sensor Hall. Jika voltase naik, sensor menyentuh kutub magnet pencari selatan. Jika voltase turun, artinya sensor menyentuh kutub magnet pencari utara. 4Temukan selisih antara voltase awal dan baru. Jika sensor dikalibrasi dalam milivolt, bagikan dengan untuk mengubah milivolt menjadi volt. 5Bagikan hasilnya dengan nilai sensitivitas sensor. Sebagai contoh, jika sensor memiliki sensitivitas 5 milivolt per gauss, bagi dengan 10. Nilai yang diperoleh adalah kekuatan medan magnet dalam gauss. 6Ulangi pengujian kekuatan medan magnet pada berbagai jarak. Letakkan sensor pada beragam jarak yang berbeda dari kutub magnet dan catat hasilnya. Iklan Kekuatan medan magnet akan berkurang sebanyak kuadrat jarak dari kutub-kutub magnet. Oleh karenanya, jika jaraknya digandakan, kekuatan medan menurun sebanyak empat kali. Namun, dari pusat magnet, kekuatan medan magnet menurun sebanyak kubik pangkat tiga dari jarak. Sebagai contoh, jika jaraknya digandakan, kekuatan medan magnet berkurang sebanyak delapan kali. Iklan Peringatan Anda bisa menghilangkan daya magnet dengan menjatuhkan atau memukul kutub magnet yang berlawanan dengan kutub magnet bumi kutub pencari utara menunjuk ke selatan, dan kutub pencari selatan menunjuk ke utara atau pada sudut yang tepat dengan kutub magnetis bumi. Anda bisa mengubah paku baja menjadi magnet dengan memukulkannya saat sejajar dengan kutub magnet bumi. Iklan Hal yang Anda Butuhkan Magnet batang Penjepit jemuran Kertas atau cangkir stirofoam ukuran 0,5 liter Penjepit kertas Selotip penutup, potong menjadi setrip kecil Gaussmeter atau multimeter Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? Materi fisika pasti ngga jauh dong sama Medan Magnet. Lalu apa sih sebenarnya medan magnet itu? Langsung simak aja pembahasan berikut ini. Pengertian Medan MagnetSifat – Sifat Medan MagnetPrinsip KemagnetanGambar Kutub MagnetSatuan Medan Magnet1. Garis Gaya2. Rapat Garis – Garis Gaya B = Flux Density3. Medan Magnet Sekitar Arus Listrik4. Hukum Biot Savart5. Induksi Magnetik6. Solenoide7. Gaya LorentzRumus Medan MagnetMenentukan Kutub Magnet dengan Tangan Kanan Pengertian Medan Magnet Medan magnet merupakan suatu medan yang dibentuk dengan menggerakan muatan listrik arus listrik yang menyebabkan munculnya gaya di muatan listrik yang bergerak lainnya. Putaran mekanika kuantum dari satu partikel membentuk medan magnet dan putaran itu dipengaruhi oleh dirinya sendiri seperti arus listrik, ini yang menyebabkan medan magnet dari ferromagnet permanen. Medan magnet juga biasa disebut verktor magnet yaitu berhubungan dengan titik dalam ruangan yang bisa di ubah – ubah menurut waktu. Arah magnet yaitu searah dengan jarum jam atau jarum kompas. Nah, magnet punya 2 kutub yaitu kutub utara dan kutub selatan. Kedua kutub tersebut saling tarik – menarik dengan simbol - dan +. Kalo - bertemu dengan -, maka akan saling tolak – menolak sama dengan kalo + bertemu dengan +, maka akan saling tolak – menolak juga. Sifat – Sifat Medan Magnet Berikut, dibawah ini ada beberapa sifat – sifat medan magnet, diantaranya yaitu Magnet sebagai petunjuk kompas. Magnet mampu menarik benda seperti logam, besi dan sejenisnya. Magnet bisa menembus benda buat tarikan, semakin kuat gaya magnetnya maka semakin kuat juga gaya tarikannya. Magnet memiliki dua kutup yaitu kutup utara dan selatan. Kalo kutup utara bertemu dengan kutup utara maka akan saling tolak menolak begitu juga sebaliknya. Penggolongan Benda Berdasarkan Sifat Magnetnya, yaitu Berdasarkan sifat magnetnya, benda dibagi jadi 2 macam yaitu ferromagnetik benda yang bisa ditarik kuat oleh magnet, parramagnetik benda yang bisa ditarik magnet dengan lemah dan diamagnetik benda yang gak bisa ditarik oleh magnet. Contohnya Ferromagnetik yaitu berupa besi, baja, nikel dan kobalt. Contohnya Parramagnetik yaitu berupa platina dan aluminium. Contohnya Diamagnetik yaitu berupa seng, dan bismut. Nah, Magnet sendiri bisa menarik benda logam tertentu karena susunan magnet elementer didalam magnet itu tersusun teratur. Kalo kamu bisa membuat susunan magnet elementer teratur, maka kamu akan bisa membuat magnet. Prinsip Kemagnetan Pada sebuah magnet sebenarnya kumpulan jutaan magnet ukuran mikroskopik yang teratur satu dan lainnya. Kutub utara dan kutub selatan magnet posisinya teratur, kamu bisa lihat gambar dibawah ini. Secara keseluruhan kekuatan magnetnya jadi besar. Logam besi bisa jadi magnet secara permanen tetap atau bersifat megnet, sedangkan dengan cara induksi elektromagnetik. Tapi, ada beberapa logam yang gak bisa jadi magnet, contohnya yaitu tembaga, aluminium, dan logam tersebut dinamakan diamagnetik. Bumi adalah magnet alam raksasa, bisa kamu buktikan dengan alat yang dinamakan kompas, dimana jarum penunjuk pada kompas akan menunjukkan arah utara dan selatan bumi, seperti pada gambar berikut ini. Karena, sekeliling bumi sebenarnya dilingkupi garis gaya magnet yang gak tampak oleh mata kamu, tapi bisa diamati dengan kompas keberadaannya. Batang magnet memancarkan garis gaya magnet yang melingkupi dengan arah dari utara ke selatan. Bukti ini dilakukan dengan menempatkan batang magnet diatas selembar kertas, dan diatas kertas tersebut ditaburkan serbuk halus besi secara merata, yang terjadi yaitu bentuk garis – garis dengan pola melengkung oval diujung – ujung kutub. Ujung kutub utara – selatan muncul pola garis gaya yang kuat. Daerah netral pola garis gaya magnetnya lemah. Bagian netral magnet artinya gak punya kekuatan magnet. Buat membuktikan, kalo daerah netral gak punya kekuatan magnet. Ambil beberapa sekrup besi, coba amati tampak sekrup besi akan menempel baik diujung kutub utara atau ujung kutub selatan. Daerah netral dibagian tengah sekrup gak akan menempel sama sekali, dan sekrup akan terjatuh. Mengapa besi biasa berbeda logam magnet? Pada besi biasa ada kumpulan magnet – magnet dalam ukuran mikroskopik, tapi posisi masing – masing magnet gak beraturan satu dengan lainnya, jadi saling menghilangkan sifat kemagnetannya. Arah garis gaya magnet dengan pola garis melengkung mengalir dari arah kutub utara ke kutub selatan. Didalam batang magnet sendiri garis gaya mengalir sebaliknya, yaitu dari kutub selatan ke kutub utara. Didaerah netral gak ada garis gaya diluar batang magnet. Bukti ini, secara visual garis gaya magnet buat sifat tarik menarik pada kutub beda dan sifat tolak – menolak pada kutub sama pakai magnet dan serbuk halus besi, seperti gambar ini. Tampak jelas kutub sejenis utara – utara garis gaya saling menolak satu dan lainnya. Pada kutub yang beda utara – selatan, garis gaya magnet punya pola tarik menarik. Sifat saling tarik – menarik dan tolak – menolak magnet jadi dasar bekerjanya motor listrik. Pola garis medan magnet tolak – menolak dan 4b. pola garis medan magnet tarik – menarik. Buat dapat garis gaya magnet yang merata disetiap titik permukaan maka ada 2 bentuk yang mendasari rancangan mesin listrik. Bentuk datar flat akan menghasilkan garis gaya merata setiap titik permukaannya. Bentuk melingkar radial, juga menghasilkan garis gaya yang rata setiap titik permukaannya. Gambar Kutub Magnet Perhatikan gambar di atas, gambar di atas ada 4 aturannya yaitu Kalo kutub selatan bertemu dengan kutub selatan, maka akan saling tolak – menolak. Kalo kutub selatan bertemu dengan kutub utara, maka akan saling tarik – menarik Kalo kutub utara bertemu dangan kutub utara, maka akan saling tolak – menolak Kalo kutub selatan bertemu dengan kutub utara, maka akan saling tarik – menarik. Satuan Medan Magnet 1. Garis Gaya Garis gaya yaitu lintasan kutub utara dalam medan magnet atau garis yang bentuknya demikian sampai kuat medan di tiap titik dinyatakan oleh garis singgungnya. Garis – garis gaya keluar dari kutub – kutub dan masuk ke dalam kutub selatan. Untuk buat pola garis gaya bisa dengan jalan menaburkan serbuk besi disekitar magnet. Buat menunjukan adanya medan magnet bisa dilakukan dengan meletakan beberapa kompas disekitar magnet. Lalu, jarum – jarum pada kompas akan menunjukkan arah garis-garis gaya magnet pada titik – titik tertentu disekitar magnet. Jadi, adanya medan magnet bisa digambarkan dengan garis – garis gaya magnet. Garis gaya magnet yaitu garis khayal yang merupakan lintasan kutub utara magnet – magnet kecil apabila bisa bergerak dengan bebas. Garis – garis gaya magnet selalu mengarah dari kutub utara ke selatan dangak pernah berpotongan. Gaya tarik – menarik antara dua kutub magnet gak senama dan gaya tolak – menolak antara 2 kutub yang senama digambarkan dengan garis – garis gaya magnet. 2. Rapat Garis – Garis Gaya B = Flux Density Jumlah garis gaya, tiap satuan luas yang tegak lurus kuat medan. Rumusnya B = Ξ¦/A Kuat medan magnet di suatu titik, sebanding dengan rapat garis gaya dan berbanding terbalik dengan permeabilitasnya. H = B/Β΅ atau B = Β΅ . H = Β΅ . r . Β΅ . o . H Keterangan B = Rapat garis – garis gaya Β΅ = Permeabilitas zat itu H = Kuat medan magnet. NOTE Rapat garis – garis gaya menyatakan kebesaran induksi magnetik. Medan magnet yang rapat garis – garis gayanya sama seperti, medan magnet serba sama homogen . Menyatakan Kalo rapat garis-garis gaya dalam medan yang sama B , maka banyaknya garis-garis gaya Ξ¦ yang menembus bidang seluar A m2 dan mengapis sudut sin’ dengan kuat medan yaitu = Ξ¦ = Sin Ξ± satuannya Weber. 3. Medan Magnet Sekitar Arus Listrik Percobaan OERSTED Di atas jarum kompas yang seimbang dibentangkan seutas kawat, jadi kawat itu sejajar dengan jarum kompas. Kalo kedalam kaewat dialiri arus listrik, ternyata jarum kompas berkisar dari keseimbangannya. Jadi, kesimpulannya kalo disekitar arus listrik ada medan magnet. Kalo arus listrik yang ada antara telapak tangan kanan dan jarum magnet mengalir dengan arah dari pergelangan tangan menuju ujung – ujung jari, kutub utara jarum berkisar ke arah ibu jari. Kalo arus listrik arahnya dari pergelangan tangan kanan menuju ibu jari, arah melingkarnya jari tangan menyatakan perkisaran kutub Utara. Pola garis – garis gaya di sekitar arus lurus. Pada sebidang karton datar ditembuskan sepotong kawat tegak lurus, di atas karbon ditaburkan serbuk besi menempatkan diri berupa lingkaran – lingkaran yang titik pusatnya pada titik tembus kawat. Cara menentukan arah medan magnet, kalo arah dari pergelangan tangan menuju ibu jari, arah melingkar jari tangan menyatakan arah medan magnet. 4. Hukum Biot Savart Besar induksi magnetik di satu titik di sekitar elemen arus, sebanding dengan panjang elemen arus, besar kuat arus, sinus sudut yang diapit arah arus dengan jaraknya sampai titik tersebut dan berbanding terbalik dengan kuadrat jaraknya. Rumusnya Ξ”B = k. sin Ξ±/r2 K yaitu tetapan, didalam sistem Internasional. k = Β΅0/4Ο€ = 10-7 atau Weber/ Vektor B tegak lurus pada 1 dan r, arahnya bisa ditentukan dengan tangan kanan. Kalo 1 sangat kecil, maka bisa diganti dengan rumus dibawah ini. dB = Β΅0/4Ο€ . sin Ξ±/r2 Jadi, pesamaan ini disebut dengan hukum Ampere. 5. Induksi Magnetik Gambar dibawah ini merupakan induksi magnetik disekitar arus listrik. Besar induksi magnetik dititik A yang jaraknya a dari kawat sebanding dengan kuat arus dalam kawat dan berbanding terbalik dengan jarak titik ke kawat. Rumusnya B = Β΅0/2 I/ Keterangan B dalam W/m2 I dalam Ampere a dalam meter Kuat medan titik H = B/Β΅ = B/ = I/ mr udara = 1 Kalo kawat gak panjang, maka kamu harus pakai rumus berikut B = . cos Ξ±1 – cos Ξ±2 Induksi – induksi magnetik di pusat arus lingkaran. Titik A berjarak x dari pusat kawat melingkar, besar induksi magnetik di A maka dirumuskan Kalo kawat ini terdiri atas N lilitan maka B = Β΅0/2. Ξ±1 atau B = Β΅0/2. Induksi magnetik dipusat lingkaran. Dalam hal ini r = a dan a = 900. Besar induksi magnetik di pusat lingkaran. Rumusnya B = Β΅0/2. Keterangan B dalam W/m2 I dalam Ampere N dalam lilitan a jari-jari lilitan dalam meter Arah medan magnetik bisa ditentukan dengan aturan tangan kanan, seperti gambar dibawah ini. Kalo arah arus sesuai dengan arah melingkar jari tangan kanan arah ibu jari, maka menyatakan arah medan magnet. 6. Solenoide Solenoide merupakan gulungan kawat yang digulung seperti spiral. Kalo kedalam solenoide dialirkan arus listrik, didalam solenoide terjadi medan magnet bisa ditentukan dengan tangan. Dibawah ini, ada contoh gambar besar induksi magnetik dalam solenoide. Jari – jari penampang solenoide a, banyaknya lilitan N dan panjang solenoide 1. Banyaknya lilitan pada dx yaitu N/L.dx atau n dx, n banyaknya lilitan setiap satuan panjang di titik P. Kalo I sangat besar dibandingkan dengan a, dan p berada di tengah – tengah maka a1 = 0* dan a2 = 180* Rumus Induksi magnetik di tengah – tengah solenoide, yaitu B = Β΅0/2n atau B = Β΅0 . n . I Kalo p tepat di ujung – ujung solenoide a1 = 0* dan a2 = 90*, yaitu Rumusnya B = Β΅0/2n atau B = Β΅0/2n I 7. Gaya Lorentz Pada percobaan oersted, udah dibuktikan pengaruh arus listrik terhadap kutub magnet, gimana pengaruh kutub magnet terhadap arus listrik akan dibuktikan dari percobaan, yaitu Seutas kawat PQ ditempatkan diantara kutub – kutub magnet ladam kedalam kawat dialirkan arus listrik ternyata kawat melengkung kekiri. Gejala ini menunjukkan kalo medan magnet mengerjakan gaya pada arus listrik, disebut Gaya Lorentz. Vektor gaya Lorentz tegak lurus pada I dan B. Arah gaya Lorentz bisa ditentukan dengan tangan kanan. Kalo arah melingkar jari – jari tangan kanan sesuai dengan putaran dari I ke B, maka arah ibu jari menyatakan arah gaya Lorents. Rumus Medan Magnet Sesuai dengan hukum Ampere, besar medan magnet yang dihasilkan bisa dihitung dengan rumus B = Keterangan I = Besar arus listrik r = Jarak dari kabel Β΅0 = Konstanta permeabilitas Β΅0 = 4Ο€ x 10-7 T m/A. Menentukan Kutub Magnet dengan Tangan Kanan Tangan kanan bisa dipakai buat menentukan arah medan magnet di sekitar kawat berarus listrik. Emang, gimana caranya? Nah, kamu cukup letakkan tangan kanan karena cara yang dilakukan dengan menggenggam 4 jari tangan dan ibu jari tegak lurus, persis saat mengacungkan jempol kanan. Arah ibu jari mengarah ke atas menyatakan arah alur listrik dengan simbol i, sedangkan arah 4 jari lainnya menyatakan arah medan megnet dengan simbol B. gambar di atas pada posisi horizontal dan vertical. Originally posted 2020-01-16 223126. Satuan kuat medan magnet menurut sistem SI adalah? ampere joule newton tesla Semua jawaban benar Jawaban yang benar adalah D. tesla. Dilansir dari Ensiklopedia, satuan kuat medan magnet menurut sistem si adalah tesla. Pembahasan dan Penjelasan Menurut saya jawaban A. ampere adalah jawaban yang kurang tepat, karena sudah terlihat jelas antara pertanyaan dan jawaban tidak nyambung sama sekali. Menurut saya jawaban B. joule adalah jawaban salah, karena jawaban tersebut lebih tepat kalau dipakai untuk pertanyaan lain. Menurut saya jawaban C. newton adalah jawaban salah, karena jawaban tersebut sudah melenceng dari apa yang ditanyakan. Menurut saya jawaban D. tesla adalah jawaban yang paling benar, bisa dibuktikan dari buku bacaan dan informasi yang ada di google. Menurut saya jawaban E. Semua jawaban benar adalah jawaban salah, karena setelah saya coba cari di google, jawaban ini lebih cocok untuk pertanyaan lain. Kesimpulan Dari penjelasan dan pembahasan serta pilihan diatas, saya bisa menyimpulkan bahwa jawaban yang paling benar adalah D. tesla. Jika anda masih punya pertanyaan lain atau ingin menanyakan sesuatu bisa tulis di kolom kometar dibawah.

satuan dari kuat medan magnet jawaban tts